CJMO 1. Determine the greatest positive integer m with the following property: it is possible to select integers $1 \leq A_{1}<A_{2}<\cdots<A_{m} \leq 2017$ such that there are no indices $1 \leq i, j \leq m$ with $i-j \geq 2$ and $i-j \mid A_{i}-A_{j}$.

CJMO 2. Let $A B C$ be a triangle with centroid G and incenter I. Let B^{\prime} and C^{\prime} be the tangency points between the incircle and sides $A C$ and $A B$, respectively, and let M and N be the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. Let $B^{\prime \prime}$ be the reflection of B^{\prime} across N and $C^{\prime \prime}$ the reflection of C^{\prime} across M. Let X, Y, Z be the intersections of lines $B B^{\prime \prime}$ and $C C^{\prime \prime}$, lines $N I$ and $C C^{\prime \prime}$, and lines $M I$ and $B B^{\prime \prime}$, respectively.
(a) Show that $I Y X Z$ is a parallelogram.
(b) Show that $[B I G]+[C I G]=[M G X]+[N G X]$.

CJMO 3. Let a, b, and c be pairwise distinct positive integers, and let r be the number of distinct primes dividing c.
(a) Show that there are at most $r+1$ nonnegative integers k such that $a^{3^{k}}+b^{3^{k}} \mid c^{3^{k}}$.
(b) Find all such triples (a, b, c) for which $a+b$ is not a multiple of 3 , and $a^{k}+b^{k} \mid c^{k}$ for all $k=1,2, \ldots, r+1$.

