2020 CMC ARML Individual Questions 1 and 2 (10 minutes)

Name: \qquad
Team: \qquad
Answer to I-1: \square Answer to I-2: \square

I-1. Compute the maximum value of n for which n cards, numbered 1 through n, can be arranged and lined up in a row such that

- it is possible to remove 20 cards from the original arrangement leaving the remaining cards in ascending order, and
- it is possible to remove 20 cards from the original arrangement leaving the remaining cards in descending order.

I-2. Let $A B C D$ be a quadrilateral with side lengths $A B=2, B C=5, C D=3$, and suppose $\angle B=\angle C=90^{\circ}$. Let M be the midpoint of $\overline{A D}$ and let P be a point on $\overline{B C}$ so that quadrilaterals $A B P M$ and $D C P M$ have equal areas. Compute PM.

2020 CMC ARML Individual Questions 3 and 4 (10 minutes)

Name: \qquad
Team: \qquad
Answer to I-3: \square
Answer to I-4: \square

I-3. There is a unique nondecreasing sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\left(a_{1}+\frac{1}{a_{1}}\right)\left(a_{2}+\frac{1}{a_{2}}\right) \cdots\left(a_{n}+\frac{1}{a_{n}}\right)=2020 .
$$

Compute $a_{1}+a_{2}+\cdots+a_{n}$.
I-4. Let $0^{\circ}<\theta<90^{\circ}$ be an angle. If

$$
\log _{\sin \theta} \cos \theta, \quad \log _{\cos \theta} \tan \theta, \quad \log _{\tan \theta} \sin \theta
$$

form a geometric progression in that order, compute $\sin \theta$.

2020 CMC ARML Individual Questions 5 and 6 (10 minutes)

Name: \qquad
Team: \qquad
Answer to I-5: \square
Answer to I-6: \square

I-5. Let $A B C$ be a triangle and let M be the midpoint of $\overline{B C}$. The lengths $A B$, $A M, A C$ form a geometric sequence in that order. The side lengths of $\triangle A B C$ are 2020, 2021, x in some order. Compute the sum of all possible values of x.

I-6. Let $\mathcal{C}=\{(x, y, z): 0 \leq x, y, z \leq 1\}$. Real numbers a, b, c are selected randomly and independently such that $0<a, b, c<1$. Given that \mathcal{C} and the plane $a x+b y+c z=1$ intersect, compute the probability that their intersection is a nondegenerate hexagon.

2020 CMC ARML Individual Questions 7 and 8 (10 minutes)

Name: \qquad
Team: \qquad
Answer to I-7: \square Answer to I-8:

I-7. Compute

$$
21\left(1+\frac{20}{2}\left(1+\frac{19}{3}\left(1+\frac{18}{4}\left(\cdots\left(1+\frac{12}{10}\right) \cdots\right)\right)\right)\right) .
$$

I-8. Let $A B C$ be an equilateral triangle with circumcircle ω. Select a point P on the minor arc $B C$ of ω such that the distance from P to line $A B$ is 1 , and so that the distance from P to line $A C$ is 2 . Compute the side length of $\triangle A B C$.

2020 CMC ARML Individual Questions 9 and 10 (10 minutes)

Name: \qquad
Team: \qquad
Answer to I-9: \square Answer to I-10: \square

I-9. Let $\lceil x\rceil$ denote the smallest integer greater than or equal to x. The sequence $\left(a_{i}\right)$ is defined as follows: $a_{1}=1$, and for all $i \geq 1$,

$$
a_{i+1}=\min \left\{7\left\lceil\frac{a_{i}+1}{7}\right\rceil, 19\left\lceil\frac{a_{i}+1}{19}\right\rceil\right\} .
$$

Compute a_{100}.
I-10. Let $S(n)$ denote the sum of the digits of a positive integer n. Compute the number of positive integers n for which

- n only has nonzero digits, and
- $(S(2 n))^{2}+2 S(n)+1=345$.

