January 10 to February 3, 2020

CJMO 1. Let N be a positive integer, and let S be the set of all tuples with positive integer elements and a sum of N. For instance, $t_1 = (N)$, $t_2 = (1, 1, N-2)$, $t_3 = (1, N-1)$, and $t_4 = (N-1, 1)$ are all distinct tuples in S. For all tuples t, let p(t) denote the product of all the elements of t. For instance, $p(t_1) = N$, $p(t_2) = N-2$, and $p(t_3) = p(t_4) = N-1$. Evaluate the expression (where we sum over all elements t of S)

$$\sum_{t \in S} p(t)$$

CJMO 2. Let $f : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ (meaning f takes positive real numbers to positive real numbers) be a nonconstant function such that for any positive real numbers x and y,

$$f(x)f(y)f(x+y) = f(x) + f(y) - f(x+y).$$

Prove that there is a constant a > 1 such that

$$f(x) = \frac{a^x - 1}{a^x + 1}$$

for all positive real numbers x.

CJMO 3. Let ABC be an acute triangle with circumcenter O, orthocenter H, and $\angle A = 45^{\circ}$. Denote by M the midpoint of \overline{BC} , and let P be a point such that \overline{AP} is parallel to \overline{BC} and $\angle HMB = \angle PMC$. Show that if segment OP intersects the circle with diameter \overline{AH} at Q, then \overline{OA} is tangent to the circumcircle of $\triangle APQ$.

January 10 to February 3, 2020

CJMO 4. For all positive integers k, define s(k) to be the result when the last digit of k is moved to the front of k. For instance, s(2020) = 202 and s(1234) = 4123. For each positive integer n, find the number of positive integers $k < 10^n$ that satisfy s(9k) = 9s(k).

CJMO 5. Let ABC be a triangle, and D be a point on the internal angle bisector of $\angle BAC$ but not on the circumcircle of $\triangle ABC$. Suppose that the circumcircle of $\triangle ABD$ intersects \overline{AC} again at P and the circumcircle of $\triangle ACD$ intersects \overline{AB} again at Q. Denote by O_1 and O_2 the circumcenters of $\triangle ABD$ and $\triangle ACD$, respectively. Prove that the circumcenters of $\triangle ABC$, $\triangle APQ$, and $\triangle AO_1O_2$ are collinear.

CJMO 6. Let $f(x) = x^2 - 2$. Prove that for all positive integers n, the polynomial

$$P(x) = \underbrace{f(f(\dots f(x) \dots)) - x}_{n \text{ times}}$$

can be factored into two polynomials with integer coefficients and equal degree.