CJMO 1. Let N be a positive integer, and let S be the set of all tuples with positive integer elements and a sum of N. For instance, $t_{1}=(N), t_{2}=(1,1, N-2), t_{3}=(1, N-1)$, and $t_{4}=(N-1,1)$ are all distinct tuples in S. For all tuples t, let $p(t)$ denote the product of all the elements of t. For instance, $p\left(t_{1}\right)=N, p\left(t_{2}\right)=N-2$, and $p\left(t_{3}\right)=p\left(t_{4}\right)=N-1$.
Evaluate the expression (where we sum over all elements t of S)

$$
\sum_{t \in S} p(t) .
$$

CJMO 2. Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ (meaning f takes positive real numbers to positive real numbers) be a nonconstant function such that for any positive real numbers x and y,

$$
f(x) f(y) f(x+y)=f(x)+f(y)-f(x+y)
$$

Prove that there is a constant $a>1$ such that

$$
f(x)=\frac{a^{x}-1}{a^{x}+1}
$$

for all positive real numbers x.

CJMO 3. Let $A B C$ be an acute triangle with circumcenter O, orthocenter H, and $\angle A=45^{\circ}$. Denote by M the midpoint of $\overline{B C}$, and let P be a point such that $\overline{A P}$ is parallel to $\overline{B C}$ and $\angle H M B=\angle P M C$. Show that if segment $O P$ intersects the circle with diameter $\overline{A H}$ at Q, then $\overline{O A}$ is tangent to the circumcircle of $\triangle A P Q$.

CJMO 4. For all positive integers k, define $s(k)$ to be the result when the last digit of k is moved to the front of k. For instance, $s(2020)=202$ and $s(1234)=4123$. For each positive integer n, find the number of positive integers $k<10^{n}$ that satisfy $s(9 k)=9 s(k)$.

CJMO 5. Let $A B C$ be a triangle, and D be a point on the internal angle bisector of $\angle B A C$ but not on the circumcircle of $\triangle A B C$. Suppose that the circumcircle of $\triangle A B D$ intersects $\overline{A C}$ again at P and the circumcircle of $\triangle A C D$ intersects $\overline{A B}$ again at Q. Denote by O_{1} and O_{2} the circumcenters of $\triangle A B D$ and $\triangle A C D$, respectively. Prove that the circumcenters of $\triangle A B C, \triangle A P Q$, and $\triangle A O_{1} O_{2}$ are collinear.

CJMO 6. Let $f(x)=x^{2}-2$. Prove that for all positive integers n, the polynomial

$$
P(x)=\underbrace{f(f(\ldots f}_{n \text { times }}(x) \ldots))-x
$$

can be factored into two polynomials with integer coefficients and equal degree.

