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6. Figures are not necessarily not drawn to scale.

7. Before beginning the exam, you will ask yourself to record certain information on the
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Sheet should you choose to obtain one from https://www.maa.org/math-competitions/

amc-10-12/.
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1. For how many integers n does 22n = 2n2
hold?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

2. Jerry is at the gym and is going to use the bench press. He wants to put on 5, 5, 10,

10, 10, and 20 pound weights on either side of the bar such that the bar is balanced.

If equal weights are indistinguishable, the two sides of the bar are distinguishable, he

must use all six weights, and order doesn’t matter, how many ways can he put on

these weights?

(A) 0 (B) 2 (C) 4 (D) 6 (E) 8

3. Let f(n) = n2 +n+2020. What is the sum of the distinct prime factors of the number

f(2019)?

(A) 90 (B) 108 (C) 110 (D) 111 (E) 676

4. Let n be a positive integer, and consider the set

S = {1, 4, 9, 16, 25, 36, n}

where all seven of its elements are distinct. We replace every odd element k of S with

k+1, and we replace every even element k of S with k−1. It is given that the median

of the resulting set is equal to the median of S. How many possible values of n are

there?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 6

5. Let a0, a1, . . ., a2019 be real numbers such that a0 = 0 and an + a−1
n+1 = 2 for every

integer n ≥ 0. What is the value of the product a1a2 · · · a2019?

(A)
1

2020
(B)

1

2019
(C)

1

1010
(D)

1

1009
(E) 1

6. Tasty and Stacy are playing a game. Tasty rolls a fair 6-sided die and Stacy rolls a

fair n sided die, whose faces are numbered from 1 to n. Stacy wins if the sum of the

values of the two dice is divisible by 5. For which of the following values of n does

Stacy maximize her chances to win?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10
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22. In triangle ABC, let D, E, F denote the feet of the altitudes from A, B, C, respec-

tively. If the distance from A to EF is 2, the distance from B to FD is 3 and the

distance from C to DE is 6, what is the area of 4DEF?

(A) 3 (B) 3
√

3 (C) 6 (D) 6
√

3 (E) 9

23. Triangle ABC has ∠B = 30◦, and satisfies
b+ c

2 cosC
= a. What is the degree measure

of ∠A?

(Here, a = BC, b = CA, c = AB.)

(A) 100 (B) 112.5 (C) 135 (D) 140 (E) 160

24. Call a four-digit positive integer asuboptimal if the sum of two of its digits is equal to

the sum of the other two digits. For instance, 1234, 2020, and 9801 are all asuboptimal.

How many four-digit positive integers are asuboptimal?

(A) 1494 (B) 1557 (C) 1584 (D) 1632 (E) 1845

25. Feynman is stuck in a bunker with only a clock to tell time; however, the minute and

hour hands have the same length, so it is impossible to tell them apart. Suppose that

Feynman is able to accurately predict the time to an error of at most 3 hours. If at

one instant he looks at the clock but determines the time incorrectly, which of these

is nearest to the maximum possible error in minutes from the actual time?

(A) 165 (B) 166 (C) 167 (D) 168 (E) 169
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7. How many subsets S of the following four are there such that it is possible for all

statements in S to be true and all other statements to be false?

• At least one of these statements is true.

• Both this statement and the following statement are true.

• This statement is true.

• The first statement is false.

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

8. Let i =
√
−1. What is the largest positive integer n such that the equation

(z − 1)(z + 1) = 2019 + ni

has at least one solution z ∈ C?

(A) 89 (B) 90 (C) 91 (D) 92 (E) 93

9. Positive integers b4 and b6 have the property that there is a unique positive integer b5
such that

1 >
b4
42
>
b5
52
>
b6
62
.

If b4 + b6 = 24, what is the unique value of b5?

(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

10. There exists a positive integer n such that

√
n+

√
n+
√
n+ · · · = 1000

n+ 1000
n+ 1000

n+···

.

What is the sum of the digits of n?

(A) 1 (B) 2 (C) 9 (D) 10 (E) 18

11. Let ABCD be a rectangle. Suppose the vertices of ABCD have x-coordinates of 1,

2, 3, 4 in some order. What is the minimum possible area of ABCD?

(A) 2 (B) 4 (C)
9

2
(D) 8 (E) 9
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18. The value of

tan
( π

24

)
+ tan

(
3π

24

)
+ tan

(
5π

24

)
+ tan

(
7π

24

)
+ tan

(
9π

24

)
+ tan

(
11π

24

)

can be expressed as
√
m+

√
n, where m and n are integers. What is m+ n?

(A) 56 (B) 98 (C) 104 (D) 112 (E) 200

19. Let a and b be positive real numbers satisfying

(log2 a)(log4 b) + a2 = 135 and (log4 a)(log2 b) + b2 = 263.

Then the value of ab can be written as p
√
q for positive integers p and q such that q

is not divisible by the square of any prime. What is p+ q?

(A) 66 (B) 130 (C) 258 (D) 514 (E) 1026

20. Rectangle ABCD is a golden rectangle, meaning that if we construct points P1 and P2

on AB and CD, respectively, such that AP1P2D is a square, then rectangles ABCD

and P2P1BC are similar. In other words, P2P1BC is also a golden rectangle. Continue

this construction on rectangle P2P1BC: construct points P3 and P4 on P2P1 and BC,

respectively, such that P2P3P4C is a square, so that P4P3P1B is also a golden rectangle.

If this construction repeats infinitely, then there is one point G inside all of these golden

rectangles. What is tan∠BAG?

A B

CD

P1

P2

P3 P4
P5

P6

P7P8

(A)

√
5− 1

8
(B)

3−
√

5

4
(C)

√
5− 2 (D) 2−

√
3 (E)

3−
√

5

2

21. How many ordered triples (a, b, c) of not necessarily distinct positive integer divisors

of 216, 000 satisfy

lcm(a, gcd(b, c)) = lcm(b, gcd(a, c)) = lcm(c, gcd(a, b))?

(A) 33, 880 (B) 81, 200 (C) 106, 400 (D) 120, 960 (E) 212, 800

2020 CMC 12A Problems 4

12. Consider a semicircle Γ with diameter AB. Consider the set S of circles tangent to

both Γ and AB. The centers of all circles in S form a locus that is a portion of a

(A) hyperbola

(B) non-circular ellipse

(C) circle

(D) parabola

(E) none of these

13. For a set of positive integers S, its primality is the number of primes that divide some

element of S. For instance, {1} has primality 0 and {12, 21} has primality 3. If a set

S of n consecutive integers has primality 10, what is the maximum possible value of

n?

(A) 1 (B) 10 (C) 16 (D) 30 (E) 46

14. Let m be the number of digits in 9!9!, and let n be the number of digits in 10!10!.

Which of the following values is closest to m
n

?

(A)
1

14
(B)

1

13
(C)

1

12
(D)

1

11
(E)

1

10

15. Let ABC be a triangle with AB = 30, BC = 51, CA = 63. Points P and Q lie on BC,

R lies on CA, and S lies on AB such that PQRS is a parallelogram, and the center

of PQRS coincides with the centroid of 4ABC. What is the area of parallelogram

PQRS?

(A) 84 (B) 126 (C) 168 (D) 336 (E) 378

16. Over all N > 0, what is the maximum possible number of permutations a, b, c, d,

e of the integers 2, 3, 5, 7, 11 such that it is possible to put parentheses around the

expression

a÷ b÷ c÷ d÷ e
so that it equals N?

(A) 6 (B) 24 (C) 36 (D) 60 (E) 120

17. Let a, b, c, d be distinct positive real numbers forming a geometric progression, in

that order. Suppose that log a, log b, log γ, log d form a geometric progression too, in

that order. If a =
√

2, what is γ?

(A)
√

2 (B) 2 (C) 2
√

2 (D) 4 (E) 4
√

2


